Mendel and Heredity
Chapter 8
Ms. Hogg, Biology

The Origins of Genetics

• Heredity – the passing of characteristics from parent to offspring
 – Before DNA and chromosomes were discovered, heredity was one of the greatest mysteries of science!
Gregor Mendel

• The scientific study of heredity began with Gregor Mendel
 – Austrian monk
 – Carried out experiments with garden peas
 – He was the 1st to develop rules that accurately predict patterns of heredity.
 – “Father of Genetics”

Pea Plant
7 Characteristics Mendel Studied:

<table>
<thead>
<tr>
<th>Trait</th>
<th>Variants</th>
<th>Trait</th>
<th>Variants</th>
</tr>
</thead>
<tbody>
<tr>
<td>Seed color</td>
<td>Yellow, Green</td>
<td>Seed shape</td>
<td>Round, Wrinkled</td>
</tr>
<tr>
<td>Seed shape</td>
<td>Round, Wrinkled</td>
<td>Pod color</td>
<td>Green, Yellow</td>
</tr>
<tr>
<td>Flower color</td>
<td>Purple, White</td>
<td>Pod shape</td>
<td>Smooth, Constricted</td>
</tr>
<tr>
<td>Flower position</td>
<td>Axial, Terminal</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Pollen Transfer in Mendel’s Experiments
Mendel’s Hypotheses

#1

• For each inherited characteristic, an individual has **two** copies of the gene – one from each parent.

Mendel’s Hypotheses

#2

• There are alternative versions of genes.
 – These different “versions” are called **alleles**.
 – An individual receives one allele from each parent.
Mendel’s Hypotheses

#3

- When two different alleles occur together, one of them may be completely expressed, while the other may have no observable affect on the organisms appearance.

- **Dominant** = expressed trait
- **Recessive** = trait that is NOT expressed

<table>
<thead>
<tr>
<th>pistil</th>
<th>pollens</th>
</tr>
</thead>
<tbody>
<tr>
<td>♀</td>
<td>♂</td>
</tr>
<tr>
<td>B</td>
<td>B</td>
</tr>
<tr>
<td>b</td>
<td>b</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Mendel’s Hypotheses
#4

• When gametes are formed, the alleles for each gene in an individual separate independently of one another.

Terms of Genetics

• **Homozygous** = two alleles of a gene are the SAME
 – Example: \textbf{BB} or \textbf{bb}

• **Heterozygous** = two alleles of a gene are DIFFERENT
 – Example: \textbf{Bb}
Terms of Genetics

- **Genotype** = the set of alleles that an individual has for a trait
 - Example: BB

- **Phenotype** = the physical appearance of a characteristic
 - Example = Brown hair

Punnett Square

- A punnett square is a diagram that predicts the outcome of a genetic cross

- Monohybrid cross:

![Punnett Square Diagram](image)
Genetics:

Parental Generation (F):
- **RR** × **rr**
- "self-pollinated" resulting in **F1 generation**
 - **Rr**

F1 Generation:
- **Pollen:**
 - **R**
 - **r**

F2 Generation:
- **Seeds:**
 - **RR**
 - **Rr**
 - **rr**

© 2006 Encyclopædia Britannica, Inc.
The Hardy-Weinberg Principle

\[p^2 + 2pq + q^2 = 1 \]

You can use this equation to predict genotype frequencies in a population.

The sum of allele frequencies must always equal 1.

\[p + q = 1 \]
Exceptions...

- The Hardy-Weinberg principle holds true for any population as long as evolutionary forces are not acting...
 - Mutations
 - Gene flow
 - Nonrandom mating
 - Genetic drift
 - Natural selection